Imaging in turbid media using quasi-ballistic photons
نویسندگان
چکیده
We study by means of experiments and Monte Carlo simulations, the scattering of light in random media, to determine the distance upto which photons travel along almost undeviated paths within a scattering medium, and are therefore capable of casting a shadow of an opaque inclusion embedded within the medium. Such photons are isolated by polarisation discrimination wherein the plane of linear polarisation of the input light is continuously rotated and the polarisation preserving component of the emerging light is extracted by means of a Fourier transform. This technique is a software implementation of lock-in detection. We find that images may be recovered to a depth far in excess of what is predicted by the diffusion theory of photon propagation. To understand our experimental results, we perform Monte Carlo simulations to model the random walk behaviour of the multiply scattered photons. We present a new definition of a diffusing photon in terms of the memory of its initial direction of propagation, which we then quantify in terms of an angular correlation function. This redefinition yields the penetration depth of the polarisation preserving photons. Based on these results, we have formulated a model to understand shadow formation in a turbid medium, the predictions of which are in good agreement with our experimental results.
منابع مشابه
Statistical detection and imaging of objects hidden in turbid media using ballistic photons.
We exploit recent advances in active high-resolution imaging through scattering media with ballistic photons. We derive the fundamental limits on the accuracy of the estimated parameters of a mathematical model that describes such an imaging scenario and compare the performance of ballistic and conventional imaging systems. This model is later used to derive optimal single-pixel statistical tes...
متن کاملImproved importance sampling for Monte Carlo simulation of time-domain optical coherence tomography
We developed an importance sampling based method that significantly speeds up the calculation of the diffusive reflectance due to ballistic and to quasi-ballistic components of photons scattered in turbid media: Class I diffusive reflectance. These components of scattered photons make up the signal in optical coherence tomography (OCT) imaging. We show that the use of this method reduces the co...
متن کاملMonte Carlo simulation of optical coherence tomography for turbid media with arbitrary spatial distributions.
We developed a Monte Carlo-based simulator of optical coherence tomography (OCT) imaging for turbid media with arbitrary spatial distributions. This simulator allows computation of both Class I diffusive reflectance due to ballistic and quasiballistic scattered photons and Class II diffusive reflectance due to multiple scattered photons. It was implemented using a tetrahedron-based mesh and imp...
متن کاملAll Photons Imaging Through Volumetric Scattering
Imaging through thick highly scattering media (sample thickness ≫ mean free path) can realize broad applications in biomedical and industrial imaging as well as remote sensing. Here we propose a computational "All Photons Imaging" (API) framework that utilizes time-resolved measurement for imaging through thick volumetric scattering by using both early arrived (non-scattered) and diffused photo...
متن کاملEnhancement of optical coherence microscopy in turbid media by an optical parametric amplifier.
We report the enhancement in imaging performance of a spectral-domain optical coherence microscope (OCM) in turbid media by incorporating an optical parametric amplifier (OPA). The OPA provides a high level of optical gain to the sample arm, thereby improving the signal-to-noise ratio of the OCM by a factor of up to 15 dB. A unique nonlinear confocal gate is automatically formed in the OPA, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999